
Security of the AES with a Secret S-box

Tyge Tiessen Lars R. Knudsen Stefan Kölbl
Martin M. Lauridsen

DTU Compute
Technical University of Denmark

22nd International Workshop on Fast Software Encryption,
2015

1 / 24



Why bother looking at secret S-boxes?

Potential reasons for using a secret S-box in AES
Increase size of the secret (128–256 bits → 1812–1940 bits)
Legal obligation to use "secret" cipher but lack of resources to
develop dedicated one

Why else might we want to cryptanalyze this (apart from the pure
joy of cryptanalysis)?
We might gain

Insight into the structural security of AES
Potential applications in whitebox cryptography and SCARE
(side-channel reverse engineering)

2 / 24



The cryptanalytic scenario

The Target
The Advanced Encryption Standard (AES) where the standard
(Rijndael) S-box has been substituted everywhere it appears with a
randomly chosen S-box about which the adversary has no
knowledge.

The Goal
Retrieve both the S-box and the key. The goal is thus not to just
find a decryption algorithm.

3 / 24



Know your AES

I assume you all know that →
by heart.

4 / 24



Differential and linear cryptanalysis

A random 8-bit S-box is already very likely to have low
maximum differential probability and maximum square
correlation. [O’C95][O’C94]
Additional filtering can guarantee good differential and linear
probabilities.

⇒ Due to the strong diffusion of AES, good differential and
linear attacks remain unlikely even with a random S-box.
(How to find good differentials or linear hulls is another
question by itself.)

⇒ Integral cryptanalysis seems to be our best shot.

5 / 24



Integral attacks

Idea
Instead of looking at single plaintexts or pairs of plaintexts, look at
the properties of a whole set of plaintexts as it propagates through
a cipher.

original attack is Square attack by Knudsen
generalized by Lucks to saturation attacks
and by Shamir and Biryukov to SASAS structures
can break 4-6 rounds of AES-128
can be viewed as a clever way of calculating higher-order
differentials

6 / 24



The boring notations and definitions slide

Definition
A Λ-set is a set of 256 messages that differs only in one byte but
takes for this byte all possible 256 values.

Properties of sets of 256 bytes, as used in the Square attack
P : each possible value appears once
B : all values sum up to zero
· : all bytes are the same value
? : no clue

To save me and you the pain, I will say:
"Rijndael field" for F256
"The vector space" for F8

2

7 / 24



Effect of the SubBytes operation on multisets

Effect in P sets

SBP P

Effect on B sets

SBB ?

8 / 24



Effect of the MixColumns operation on multisets

Effect on a column with 3 bytes constant, one byte P

MC

·
·

P
·

P
P
P
P

Effect on a column with all bytes P

MC

P
P
P
P

B
B
B
B

9 / 24



The inverted Square attack on four rounds

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

P
P
P
P

P
P
P
P

P
P
P
P

P
P
P
P

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.P
P
P
P .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.P

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.P
·

0 1 2 3 4
AK
SB
SR
MC
AK

SB
SR
MC
AK

SB
SR
MC
AK

SB
SR
AK

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

B
B
B
B

B
B
B
B

B
B
B
B

B
B
B
B

P
P
P
P

P
P
P
P

P
P
P
P

P
P
P
P

P
P
P
P

P
P
P
P

P
P
P
P

P
P
P
P

AK SB SR
MC AK

10 / 24



Attacking four rounds with the SASAS attack

Looking into the attack on SASAS, we find a solution:
Generate balanced sets after the first S-box layer

→ Corresponds to a linear equation for the S-box
→ Create system of linear equations to find S-box

Problem
This can only determine the S-box up to affine equivalence over F8

2
→ 272 candidates

Can we continue with the SASAS attack?
Not if we want to recover the key and the S-box.

11 / 24



What do we do with the box now?

12 / 24



Picking up where the SASAS attack leaves us

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

AK SB
SR MC

Idea
Let us use the fact that a set of texts has the P property in every
byte after the MixColumns operation to filter out wrong S-box
candidates.

13 / 24



Steps of the attack

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

AK SB
SR MC

Find one S-box (out of the 272 options) for the first byte
(assume the whitening key byte is zero)
Determine the remaining key bytes just as in the Square attack
Determine the intermediate texts after the ShiftRows
operation up to affine equivalence over F8

2.
Now find an affine transformation that assures the P property
after the MixColumns operation
We have then determined the S-box up to affine equivalence
over F256 (216 remaining candidates)

14 / 24



Affine transformations over F256 commute with the
MixColumns matrix

Applying an invertible affine transformation over F256 to a byte
vector before multiplication with the MixColumns matrix is the
same as applying the transformation on the resulting vector:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




av0 + b
av1 + b
av2 + b
av3 + b



= a ·


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




v0
v1
v2
v3

+


b
b
b
b



15 / 24



Affine transformations over F8
2 generally do not commute

with the MixColumns matrix

Let A be an affine transformation over F8
2. With

M =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 , B =


A 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A


we generally have

MB 6= BM.

This is because linear mappings over F256 generally do not
commute with linear mappings over F8

2 that are not linear over
F256.
Can we prove this? Yes!

16 / 24



General affine transformation do not commute with field
multiplication

For a ∈ F256 let La denote the 8× 8 F2-matrix that corresponds to
multiplication with a: a · b = Lab.

Lemma
Let g be primitive in F256. Let B be an 8× 8 matrix over F2 which
commutes with Lg . Then there exists b ∈ F256 such that Lb = B.

Proof.
Let c ∈ F∗

256. As g primitive, c = gk and Lc = Lk
g for some k. By

induction B commutes with Lc . Thus B commutes with all of F256.
Let b = B1. We then have for any c ∈ F∗

256:

Bc = LcLc−1Bc = LcBLc−1c = LcB1 = Lcb = Lbc.

As this is true for any c ∈ F∗
256 and for 0, we have B = Lb.

17 / 24



How to improve the efficiency of finding the affine
equivalent

Using the P property, we still have to test 256 affine mappings
(272 affine mappings modulo affine equivalence over F256). This
can still be improved:

R property
We say that a set of bytes has the R property if in each bit
position the values 1 and 0 appear an equal number of times.

This allows us to reconstruct a correct affine mapping part by part,
reducing the overall complexity. Note that P ⇒ R ⇒ B.

18 / 24



How to improve the efficiency of finding the affine
equivalent

Let us take a closer look at the specific form of matrix M. When
written as a linear function from F 4

256 to F 4
256, it has the form

M =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 .

If we associate the multiplication with 01, 02, and 03 with their
respective linear mappings from F8

2 to F8
2, we get the following

representations:

01 =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 02 =


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

 03 =


1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1


19 / 24



How to improve the efficiency of finding the affine
equivalent

First row of M in binary notation:(
0 1 0 0 0 0 0 0

...
1 1 0 0 0 0 0 0

...
1 0 0 0 0 0 0 0

...
1 0 0 0 0 0 0 0

...

)
If we now write a0, a1, . . . , a7 for the rows of A we can write the
first row of 

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




A 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A


as

(a1, a0 ⊕ a1, a0, a0) .

20 / 24



How to improve the efficiency of finding the affine
equivalent

Because we reduce A to affine equivalence over F256, we can
fix one row.
Thus we can fix a0 and only need to try all options for a1.
Thus we need to test only 28 values at once, compared to 256

before.
Interestingly, when using a chosen-plaintext attack and
working with the inverse MixColumns matrix, the equation
involves four rows of A increasing the complexity of this step
by 216.

21 / 24



What are the complexities of the attack?

Complexities given in encryption equivalents, plaintexts/
ciphertexts, and bytes respectively.

Cipher Rnds Time Data Mem Reference

SASAS 3 221 216 220 [BS01]

AES-128 sec. S-box 4 217 216 216 This work
AES-128 4 214 29 – [DR02]

AES-128 sec. S-box 5 238 240 240 This work
AES-128 5 238 233 – [DR02]

AES-128 sec. S-box 6 290 264 269 This work
AES-128 6 244 234 236 [FKL+00]

Implemented attack for four rounds runs in less than one second.
22 / 24



Conclusions

Gain in security by using a secret S-box is low for up to six
rounds
Using the R property instead of the P property can
significantly reduce the complexity of an attack
Example of where complexity of attack depends on the
direction (encryption/decryption)

Open problems
What if all S-boxes are different (and still secret)?
→ Closer to SASAS attack
What about more than 6 rounds?

Questions?

23 / 24



Conclusions

Gain in security by using a secret S-box is low for up to six
rounds
Using the R property instead of the P property can
significantly reduce the complexity of an attack
Example of where complexity of attack depends on the
direction (encryption/decryption)

Open problems
What if all S-boxes are different (and still secret)?
→ Closer to SASAS attack
What about more than 6 rounds?

Questions?

24 / 24



References I

Alex Biryukov and Adi Shamir.
Structural cryptanalysis of SASAS.
In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045
of LNCS, pages 394–405, 2001.

Joan Daemen and Vincent Rijmen.
The Design of Rijndael: AES - The Advanced Encryption
Standard.
Information Security and Cryptography. Springer, 2002.

Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier,
Michael Stay, David Wagner, and Doug Whiting.
Improved cryptanalysis of Rijndael.
In Bruce Schneier, editor, Fast Software Encryption, FSE
2000, volume 1978 of LNCS, pages 213–230, 2000.

25 / 24



References II

Luke O’Connor.
On the Distribution of Characteristics in Bijective Mappings.
In Tor Helleseth, editor, EUROCRYPT ’93, volume 765 of
LNCS, pages 360–370. Springer, 1994.

Luke O’Connor.
Properties of linear approximation tables.
In Bart Preneel, editor, Fast Software Encryption, FSE ’94,
volume 1008 of LNCS, pages 131–136. Springer, 1995.

26 / 24


	Introduction
	Motivation
	AES with a secret S-box
	Integral Cryptanalysis

	Cryptanalysis of four rounds of AES with a secret S-box
	Applying the permutation property
	Applying a new set property
	Overall complexities of the attack

	Conclusions
	Conclusions

	Appendix

