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Symmetric Key Cryptography

What can we do?
• Encryption
• Authentication (MAC)
• Hashing
• Random Number Generation
• Digital Signature Schemes
• Key Exchange
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Authentication



Authentication

Message Authentication Code (MAC)

Message TagMAC

Key

• Produces a tag
• Provide both authenticity and integrity
• It should be hard to forge a valid tag.
• Similar to hash but has a key
• Similar to digital signature but same key
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Authentication

MAC Algorithm

• Block Cipher Based (CBC-MAC)
• Hash-based (HMAC, Sponge)
• Universal Hashing (UMAC, Poly1305)
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Authentication
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Authentication

Hash-based:

• H(k || m)

• Okay with Sponge, fails with MD construction.

• H(m || k)
• Collision on H allows to construct Tag collision.

• HMAC: H(k⊕ c1∥| H(k⊕ c2||m))
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Authentication

Universal Hashing (UMAC, Poly1305, …)

• We need a universal hash function family H.
• Parties share a secret member of H and key k.
• Attacker does not know which one was chosen.

Definition
A set H of hash functions h : U→ N is universal iff ∀x, y ∈ U:

Pr
h∈H

(h(x) = h(y)) ≤ 1
|N|

when h is chosen uniformly at random.
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Authenticated Encryption

In practice we always want Authenticated Encryption

• Encryption does not protect against malicious alterations.
• WEP [TWP07]
• Plaintext recovery OpenSSH [APW09]
• Recover TLS cookies [DR11]

Problem
Lot of things can go wrong when combining encryption and
authentication.

Note: This can allow to recover plaintext, forge messages...
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Authenticated Encryption [BN00]

Encrypt-and-MAC
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Authenticated Encryption [BN00]

MAC-then-Encrypt

Message

Message

Ciphertext

Tag

MACK′

EK

9



Authenticated Encryption [BN00]
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Authenticated Encryption

You have to be careful!

CTR-Mode
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Authenticated Encryption

Authenticated Encryption with Associated Data (AEAD)

A1, . . . ,Am
M1, . . . ,Ml

N
AE C1, . . . , Cm

T

• Associcated Data A (e.g. packet header)
• Nonce N (unique number)
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Authenticated Encryption

Galois/Counter Mode (GCM)
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Authenticated Encryption

AES-GCM

• Widely used (TLS)
• Reusing nonce compromises security
• Weak keys for ×H
• Hardware support for AES + PCLMULQDQ
• AES-GCM-SIV?

14



Authenticated Encryption

CAESAR1: Competition for Authenticated Encryption: Security,
Applicability, and Robustness

• Initially 57 submissions.
• Third round: 15 Submissions left
• Goal is to have a portfolio of AE schemes

Summary
Most applications need Authenticated Encryption!

1https://competitions.cr.yp.to/caesar.html

15

https://competitions.cr.yp.to/caesar.html


Quantum Attacks



Quantum Attacks

Attack Model

• Attacker listens to communication over classical channel.
• Can query a classic blackbox with the secret key.
• Attacker has large quantum computer.
• Only limited set of quantum algorithms available.
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Quantum Attacks

Encryption / MACs

• Recover Key in O(2k/2) with Grover’s.

Hash Function

• Find Preimage in O(2n/2) with Grover’s.
• Find Collisions in O(2n/3) [BHT97] ... but needs O(2n/3) hardware.
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Quantum Attacks

The costs are not so simple

• Costs of quantum operation vs. classic operations
• Collision finding not really faster [Ber09].

There is some work on better understanding this:

• Preimage SHA-256: 2166 logical-qubit-cycles [Amy+16].
• Preimage SHA3-256: 2166 logical-qubit-cycles [Amy+16].
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Quantum Attacks

Even-Mansour

• Two keys k1, k2.
• Uses public permutation π.

πp c

k1 k2

Classic Security

• D queries to E
• T queries to π

• Proof for upper bound on attack success O(DT/2n)
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Quantum Attacks

Quantum Oracle Access to encryption algorithm

|x⟩

|0⟩

|x⟩

|EK(x)⟩
EK

• Very strong model for adversary.
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Quantum Attacks

Simon’s Algorithm
Given

f : {0, 1}n → {0, 1}n

with promise that there exists

s ∈ {0, 1}n

such that

∀(x, y) ∈ {0, 1}n : f(x) = f(y) ⇐⇒ x⊕ y ∈ {0n, s}

Output: s

Only needs O(n) quantum queries.
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Simon’s Algorithm

Circuit
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Result
One steps finds a vector such that y · s = 0.

22



Simon’s Algorithm

Circuit

|0⟩

|0⟩

f(z)

vH⊗n

f

H⊗n

1√
2n

∑
x
|x⟩|0n⟩

Result
One steps finds a vector such that y · s = 0.

22



Simon’s Algorithm

Circuit

|0⟩

|0⟩

f(z)

vH⊗n

f

H⊗n

1√
2n

∑
x
|x⟩|f(x)⟩

Result
One steps finds a vector such that y · s = 0.

22



Simon’s Algorithm

Circuit

|0⟩

|0⟩

f(z)

vH⊗n

f

H⊗n

1√
2
|z⟩+ 1√

2
|z⊕ s⟩

Result
One steps finds a vector such that y · s = 0.

22



Simon’s Algorithm

Circuit

|0⟩

|0⟩

f(z)

vH⊗n

f

H⊗n

1√
2

1√
2n

∑
y
(−1)y·z(1+ (−1)y·s)|y⟩

Result
One steps finds a vector such that y · s = 0.

22



Simon’s Algorithm

Circuit

|0⟩

|0⟩

f(z)

vH⊗n

f

H⊗n

1√
2

1√
2n

∑
y
(−1)y·z(1+ (−1)y·s)|y⟩

Result
One steps finds a vector such that y · s = 0.

22



Quantum

Breaking Even-Mansour [KM12]

Ek1,k2(x) = π(x⊕ k1)⊕ k2

Construct:

f : {0, 1}n → {0, 1}n

x→ Ek1,k2(x)⊕ π(x) = π(x⊕ k1)⊕ k2 ⊕ π(x)

This function fulfills Simon’s promise:

f(x) = π(x⊕ k1)⊕ k2 ⊕ π(x)
f(x⊕ k1) = π(x⊕ k1 ⊕ k1)⊕ k2 ⊕ π(x⊕ k1)

Recover k1 with O(n) quantum queries.
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Quantum Attacks

Similar attacks [Kap+16] apply to

• Block Cipher Modes
• MACs
• Authenticated Encryption
• Improving Slide Attacks

Goal
Construct f such that f(x) = f(x⊕ s) for some secret s.
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Current Directions in Symmetric
Key Cryptography



Symmetric Key Cryptography

Lightweight Cryptography
• Resource constraint

• Chip area
• Memory
• Computing Power
• Power/Energy

• NIST Project5

• Many designs exists

Server
Laptop / Desktop
Smartphones
Smart devices
Microcontrollers
FPGA
ASIC
RFID / Sensor Networks

Co
m
pu
tin
g
Po
we
r

Lightweight

Standard

1https://beta.csrc.nist.gov/projects/lightweight-cryptography
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Symmetric Key Cryptography

Hash-based Signatures:
• Many calls to a hash
function...

• ...but only very short inputs.
• No collision resistance
required

Current Designs:
• Often slow on short inputs.
• Too conservative for this
restricted setting?

• Designs: ChaCha in
SPHINCS, Haraka [Köl+]

f f f
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Symmetric Key Cryptography

Multiparty Computation, Zero Knowledge, Fully Homomorphic
Encryption

• Multiplications in primitives very costly for these applications.
• Signature size directly relates to number of ANDs (for ZK).

Symmetric Key Primitives which:

• Minimize number of ANDs
• Minimize circuit depth
• Examples: LowMC [Alb+15], MiMC [Alb+16], Kreyvium [Can+16],
Flip [Méa+16]
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Conclusion

Symmetric Key Cryptography

• Encryption: AES-CTR
• Hash: SHA-2, SHA-3
• Authenticated Encryption: AES-GCM, ChaCha20-Poly1305, CAESAR

Quantum Attacks

• Mostly fine with double the parameter sizes.
• Improve cryptanalytic attacks with quantum algorithms.

1Thanks to https://www.iacr.org/authors/tikz/ for some of the figures.
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Questions?
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