HARAKA v2

Efficient Short-Input Hashing for Post-Quantum Applications

Stefan Kölbl1 Martin M. Lauridsen2 Florian Mendel3 Christian Rechberger1,3

March 7th, 2017

1DTU Compute, Technical University of Denmark, Denmark

2InfoSec Global Ltd., Switzerland

3IAIK, Graz University of Technology, Austria
Impact of Quantum Computers

• Public-key
 • Diffie-Hellman
 • RSA
 • Elliptic Curves

• Symmetric-key
 • Block Ciphers
 • Hash Functions
Impact of Quantum Computers

• Public-key
 • Diffie-Hellman
 • RSA
 • Elliptic Curves

• Symmetric-key
 • Block Ciphers (Larger key)
 • Hash Functions (Longer output)
NIST-call1

\begin{itemize}
 \item Digital Signature Scheme
 \item Encryption / Key Establishment
\end{itemize}

PQCrypto Project2

1\url{http://csrc.nist.gov/groups/ST/post-quantum-crypto/}
2\url{https://pqcrypto.eu.org/}
Hash-based Signature Schemes

- Post-quantum secure
- Minimal Assumptions
- Lamport [Lam79], Merkle Tree [Mer89], XMSS [BDH11], SPHINCS [BHH+15], ...
Performance of hash-based signature schemes

- Many calls to the hash function...
- ...but using short input only.
- ...no collision resistance required.
Example SPHINCS:

- Provides 128-bit post-quantum security.
- Signing takes roughly 500,000 hash function evaluations.
Benchmarks from SUPERCOP on Intel Core i5-6600
Benchmarks from SUPERCOP on Intel Core i5-6600
A short-input hash function

- AES-based.
- 256- and 512-bit permutation.
- Using Davies-Meyer with 0 key.
Internal permutation of Haraka v2

- Substitution Permutation Network
- Round function: $\text{mix} \circ \text{aes}^m$
Haraka-256 v2

Requires only 6 instructions per round

- $4 \times \text{vaesenc}$
- $\text{vpunpckldq, vpunpckhdq}$
Haraka-512 v2

Requires only 16 instructions per round

- $8 \times \text{vaesenc}$
- 8 for mix
Security Analysis

• Active S-boxes
 • 80 for Haraka-256 v2
 • 130 for Haraka-512 v2

• Truncated Differentials

• Meet-in-the-Middle attacks

• Round Constants [Jea16]
Performance

- AES instructions have high latency.
- Costs for mixing can be hidden.
- Often multiple independent blocks available.
<table>
<thead>
<tr>
<th></th>
<th>Haswell</th>
<th></th>
<th>Skylake</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cycles/Byte</td>
<td>Cycles/Byte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haraka-256 v2</td>
<td>1.25</td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simpirav2([b = 2])</td>
<td>1.91</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPHINCS-256-F</td>
<td>11.31</td>
<td>11.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haraka-512 v2</td>
<td>1.75</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simpirav2([b = 4])</td>
<td>4.5</td>
<td>2.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPHINCS-256-H</td>
<td>11.16</td>
<td>10.92</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiple Inputs

<table>
<thead>
<tr>
<th></th>
<th>Haswell Cycles/Byte</th>
<th>Skylake Cycles/Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haraka-256 v2</td>
<td>1.14</td>
<td>0.63</td>
</tr>
<tr>
<td>Simpirav2[$b = 2$]</td>
<td>0.96</td>
<td>0.94</td>
</tr>
<tr>
<td>SPHINCS-256-F</td>
<td>2.11</td>
<td>1.71</td>
</tr>
<tr>
<td>Haraka-512 v2</td>
<td>1.43</td>
<td>0.72</td>
</tr>
<tr>
<td>Simpirav2[$b = 4$]</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>SPHINCS-256-H</td>
<td>1.99</td>
<td>1.62</td>
</tr>
</tbody>
</table>
SPHINCS on Intel Skylake

<table>
<thead>
<tr>
<th></th>
<th>ChaCha12</th>
<th>Haraka v2<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cycles</td>
<td>Cycles</td>
</tr>
<tr>
<td>Key generation</td>
<td>2,839,018</td>
<td>1,340,338 (×2.12)</td>
</tr>
<tr>
<td>Signing</td>
<td>43,517,538</td>
<td>20,782,894 (×2.09)</td>
</tr>
<tr>
<td>Verification</td>
<td>1,291,980</td>
<td>415,586 (×3.11)</td>
</tr>
</tbody>
</table>

³Updated numbers from https://github.com/kste/haraka.
Summary

• AES-based SPN for Short-Input Hash.
• Low Latency
• Can speed up SPHINCS significantly.

Future Work

• ARMv8 platform
• Collision vs. Preimage
CONCLUSION

Implementation of Haraka and SPHINCS-256-Haraka

https://github.com/kste/haraka
Questions?

